Earthquakes Don't Stop for Pandemics

Kristine Pankow

ICDP Lunch and Learn

26 August 2020

... but the Earth Gets Quieter

Science

Earthquake sensors record unprecedented drop in human activity due to pandemic

Such a sweeping effect has never been seen in the history of earthquake science

With Covid-19, a Seismic Quiet Like No Other

Coronavirus shutdowns led to "the longest and most coherent global seismic noise reduction in recorded history," scientists report.

SCIENCE | CORONAVIRUS COVERAGE

These charts show how coronavirus has 'quieted' the world

As people stopped commuting and traveling, the Earth's surface vibrated less –and seismologists tracked the change.

Explained: How Covid-19 lockdowns caused a drop in seismic noise levels worldwide

High frequency noise caused by human activities dropped by as much as 50 g and May this year, according to researchers.

NEWS EARTH

COVID-19 lockdowns dramatically reduced seismic noise from humans

Small ground vibrations generated by everyday activities dropped up to 50 percent in places

Examples of Seismic Noise Kilb et al. (2012)

Air Circulation System

- Time of day histograms show most detections are in the daytime.
- Waveform data shows detections are likely not seismic.
- Do not select this station for use in our initial beta-testing (i.e., detections likely non-seimsic).
- Select this station for use in our initial beta-testing (i.e., detections likely seismic).

Airports

- Time of day histograms show most detections are in the daytime.
- ✓ Waveform data shows detections are likely not seismic.
- Do not select this station for use in our initial beta-testing (i.e., detections likely non-seismic).
- Select this station for use in our initial beta-testing (i.e., detections likely seismic).

Farms (e.g., cows)

Station Z40A

- Time of day histograms show most detections are in the daytime.
- Waveform data shows detections are likely not seismic.
- Do not select this station for use in our initial beta-testing (i.e., detections likely non-seismic).
- Select this station for use in our initial beta-testing (i.e., detections likely seismic).

Traffic

Station SOL

- Time of day histograms show most detections are in the daytime.
- Waveform data shows detections are likely not seismic.
- Do not select this station for use in our initial beta-testing (i.e., detections likely non-seismic).
- Select this station for use in our initial beta-testing (i.e., detections likely seismic).
- Good News: Our detection algorithm correctly ignores signals caused by traffic as evidenced by the minimal detections during the
 - davtime at station SOL.

Next Day P

Global quieting of highfrequency seismic noise due to COVID-19 pandemic lockdown measures

Lecocq et al. (2020) Science Magazine July 2020

Back to Utah and Earthquakes and Pandemics

Beginning March 16

- University is restricted essentially closed—needed permission to go into building
- All UUSS staff teleworking
- All non-essential university travel restricted (travel off campus is considered university travel)

Plans in Place

- Continuity of Operations Planning: redundant data collection sites, operational exercises for work from home and responding to earthquakes
- Established a Google Hangouts for communication
- Limited equipment moved to staff residences—field trucks and some computers [had initially planned to be out for a couple of weeks—UUSS still teleworking]

Magnitude M_w 5.7 earthquake at 7:09 AM on Wednesday, March 18, 2020 Largest earthquake in Utah since 1992 No serious injuries or fatalities, > \$150M in damage estimates

Response During a Pandemic

- Keith Koper took small staff to university public outreach
- Kristine Pankow coordinated with remainder of staff and various USGS groups from kitchen
- Tasked all duty seismologists to help triage automatic alarms in order to process largest events first
- Worked with State partners to get land access for aftershock deployments (State was closed—offices were not open)

Impacts on the Response

- Social media reported that M 9.0 imminent at noon
- Travel restrictions due to COVID and toxic plume release
- Browning building damaged and initially red tagged

...weather, accessing PPE type supplies, receiving shipments, and mountain lions

Felt Earthquakes and Damage

Max PGA of 54% g at station LKC.

M 5.7 Mainshock

M 2.5 Aftershock

Why can't Utah have an M 9?

Fault Rupture and EQ Size

Radiated seismic energy increases ~ 30-fold as magnitude increases by 1.0 unit

USGS ShakeMap Estimated Shaking Intensities

[Same Map Scales!]

Was this the big one?

Paleoseismology from Utah Geological Survey

Salt Lake City Segment

UNIVERSITY OF UTAH SEISMOGRAPH STATIONS

Roten et al. (2012)

PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.1	0.5	2.4	6.7	13	24	44	83	>156
PEAK VEL.(cm/s)	<0.07	0.4	1.9	5.8	11	22	43	83	>160
INSTRUMENTAL INTENSITY	I	-	IV	V	VI	VII	VIII	IX	X+
Scale based upon W	ald, et al.; 1	999							

- ----

Mainshock and Aftershock (Foreshock)

2,289 total

6 with M>4 34 with 3<M<4 146 with 2<M<3

Foreshocks -

--Mainshock———Aftershocks

Chance the M 5.7 was a Foreshock

- ~5% chance that a larger (even by 0.1 units) will occur in 5 to 6 days following mainshocks
- Magnitudes 1 to 2 units larger much smaller than 5% chance

Aftershock Probabilities

2	020-03-18 13:39:35 Generic Mod	lel					
Magnitude	1 Day	1 Week					
M≥3	0-149 (30)	0-235 (33)					
M≥5	0-3 (0)	0-3 (0)					
2020-03-18 19:19:32 Bayesian Model							
Magnitude	1 Day	1 Week					
M≥3	0-21 (2)	2-43 (5)					
M≥5	0-2 (0)	0-2 (0)					
2020-03-20 21:50:20 Sequence Specific Model							
Magnitude	1 Day	1 Week					
M≥3	0-2 (1)	0-3 (4)					
M≥5	0	0					

What did we learn and what's next?

Standard Catalog

Enhanced Catalog

Relatively low b-value, meaning a higher relative number of large aftershocks.

High-Precision Relocated Aftershocks

Stress changes consistent with triggering of aftershocks up-dip, beneath the airport.

Colors represent earthquake depths

Colors represent earthquake depths

UUSS added 5 telemetered stations (BB/SM) within 7 km of the mainshock,

and 180 non-telemetered geophones throughout the Salt Lake Valley. SEISMOGRAPH STATIONS

Summary

- The 18 March 2020 M_w 5.7 Magna earthquake was the largest earthquake ever recorded on the Wasatch fault, yet it was moderate sized; an M7 earthquake would release 90 times more energy.
- It relieved a small amount of stress on the northern edge of the Salt Lake City segment (SLCS) of the Wasatch fault; the SLCS is still capable of producing an M7 earthquake.
- The recurrence interval for large earthquakes (M>6.75) on the SLCS is thought to be 1,300-1,500 years; the last large event occurred about 1,400 years ago.
- The shallow dip of the fault system at depth supports a listric model for the SLCS and favors the idea that low-angle normal faults can fail in large earthquakes.

UUSS Staff

Amir Allam – research faculty Ben Baker – research scientist Bill Blycker – systems administrator Relu Burlacu – network manager Jamie Farrell – research faculty Mark Hale – seismic analyst Corey Hatch – field engineer James Holt – post-doc Keith Koper – director Cindi Meier – business manager Maria Mesimeri – post-doc Wes O'Keefe – field technician Kris Pankow – associate director Arvind Parapuzha – field technician Jim Pechmann – research faculty Paul Roberson – seismic analyst Jon Rusho – systems engineer Becca Sumsion - comm. specialist Katherine Whidden – research scientist