Earthquake database for Utah Geological Survey Map 277: Utah earthquakes (1850–2016) and Quaternary faults: Utah Geological Survey Open-File Report 667

The Utah Geological Survey (UGS), University of Utah Seismograph Stations (UUSS), and Utah Division of Emergency Management (UDEM) recently published the Utah Earthquakes (1850–2016) and Quaternary Fault Map (UGS Map 277). The new map shows earthquakes within and surrounding Utah from 1850 to 2016, and faults considered to be sources of large earthquakes.

Utah Earthquakes (1850-2016) and Quaternary Faults

 

The faults shown on the map are considered geologically active, have been sources of large earthquakes (about magnitude 6.5 and greater) during the Quaternary Period (past 2.6 million years), and are the most likely sources of large earthquakes in the future. Most of the small to moderate-sized earthquakes on the map are “background” earthquakes not readily associated with known faults and too small to have triggered surface faulting (under about magnitude 6.5).

 

There is a 57% probability (over 1 in 2 chance) that a magnitude 6.0 or greater earthquake will occur in the Wasatch Front region in the next 50 years. To address this threat, the Utah Earthquake Program, consisting of the UGS, UUSS, and the UDEM, developed the map so the public could more fully understand the hazard from earthquakes and faults, as well as the resulting risk to property, infrastructure, and life safety in Utah. Users of the map will be able to determine past earthquake locations and relative magnitudes (size), along with the locations of active faults and the timing of their most recent movement.

 

Printed copies of the map are available for $15 at the Utah Department of Natural Resources Map & Bookstore. The map is also available as a PDF download at https://ugspub.nr.utah.gov/publications/maps/m-277.pdf (44 by 62 inches in size) and can be printed on a wide-format printer.

The database for the seismicity plotted on the map, together with explanatory information, is provided in a companion report:
Arabasz, W. J., Burlacu, R., and Pechmann, J. C., 2017, Earthquake database for Utah Geological Survey Map 277: Utah earthquakes (1850–2016) and Quaternary faults: Utah Geological Survey Open-File Report 667, 12 p. plus 4 electronic supplements, available as a PDF download.
The electronic supplements include the data for the seismic events plotted on the map, which are listed in two separate catalogs, each in the form of a Microsoft Excel workbook and an ArcGIS feature class within a file geodatabase. The catalog files are available for download.

A uniform moment magnitude earthquake catalog and background seismicity rates for the Wasatch Front and surrounding Utah region: Appendix E in Working Group on Utah Earthquake Probabilities (WGUEP)

Arabasz, W.J., Pechmann, J.C., and Burlacu, R., 2016, A uniform moment magnitude earthquake catalog and background seismicity rates for the Wasatch Front and surrounding Utah region: Appendix E in Working Group on Utah Earthquake Probabilities (WGUEP), 2016, Earthquake probabilities for the Wasatch Front region in Utah, Idaho, and Wyoming: Utah Geological Survey Miscellaneous Publication 16-3, variously paginated.

This appendix to the report by the Working Group on Utah Earthquake Probabilities (2016) describes full details of the construction and analysis of a refined earthquake catalog and the calculation of seismicity rates for the Wasatch Front and surrounding Utah region. The earthquake catalog covers the period from 1850 through September 2012. The catalog region extends from lat. 36.75° to 42.50° N and from 108.75° to 114.25° W. A uniform moment magnitude, M (and quantified magnitude uncertainty), is determined for each earthquake in the catalog.


Electronic Supplements (.xlsx)

E-1.  Best-Estimate Moment Magnitude (BEM) Earthquake Catalog

E-2.  Moment Magnitude Data

E-3.  Merged Subcatalog A, Jan. 1850-June 1962

E-4.  Merged Subcatalog B, July 1962-Dec. 1986

E-5.  Merged Subcatalog C, Jan. 1987-Sept. 2012

E-6.  Worksheets for Mobs, M~, Mpred (I0)

E-7.  Worksheets for Xnon, Xmix (Subcatalogs A, B)

E-8.  Worksheets for Xvar, Xi (Subcatalog B)

E-9.  Worksheets for Xvar, Xi (Subcatalog C)

E-10.  N* Counts for the WGUEP and Utah Regions

Earthquake Probabilities for the Wasatch Front region in Utah, Idaho, and Wyoming

Wong, I., W. Lund, C. DuRoss, P. Thomas, W. Arabasz, A. Crone, M. Hylland, N. Luco, S. Olig, J. Pechmann, S. Personius, M. Petersen, D. Schwartz, R. Smith, and S. Bowman (2016). Earthquake Probabilities for the Wasatch Front region in Utah, Idaho, and Wyoming, Utah Geological Survey Miscellaneous Publication 16-3,  418 pp.

Paleoseismology of the northern segments of the Great Salt Lake fault, Utah

Dinter, D. A., and J. C. Pechmann (2015). Paleoseismology of the northern segments of the Great Salt Lake fault, Utah, in Proc. of the Basin and Range Province Seismic Hazards Summit III, Salt Lake City, Utah, January 12‐17, W. R. Lund (Editor), Utah Geological Survey Misc. Publ. 15‐5, CD (electronic poster).

A uniform moment magnitude earthquake catalog for the Utah region (1850–2012) and estimation of unbiased recurrence parameters for background seismicity

Arabasz, W. J., J. C. Pechmann, and R. Burlacu (2015). A uniform moment magnitude earthquake catalog for the Utah region (1850–2012) and estimation of unbiased recurrence parameters for background seismicity, in Proc. of the Basin and Range Province Seismic Hazards Summit III, Salt Lake City, Utah, January 12‐17, W. R. Lund (Editor), Utah Geological Survey Misc. Publ. 15‐5, CD (electronic poster).

Paleoseismology of the Promontory Segment, East Great Salt Lake Fault

Dinter, D. A., and J. C. Pechmann (2014). Paleoseismology of the Promontory Segment, East Great Salt Lake Fault, U.S. Geol. Surv. Final Technical Rept., Award No. 02HQGR0105, 23 pp, http://earthquake.usgs.gov/research/external/reports/02HQGR0105.pdf
ABSTRACT
With funding from this project, we collected 367 km of high resolution seismic reflection data in the Great Salt Lake in 2003 and 2006: 205 km in the north arm and 162 km in the south arm, where the north and south arms are defined as the parts of the lake north and south of the railroad causeway, respectively.  Because the quality of the north arm data that we obtained was insufficient to meet the goals of the project, we collected an additional 380 km of data with new, state-of-the-art instrumentation in 2009 and 2010: 160 km in the north arm and 220 km in the south arm. The 2009 fieldwork was part of a collaborative industry-funded study. The 2010 field work was carried out using boat and equipment time that became available after the successful completion of a seismic reflection study in Utah Lake for another USGS/NEHRP-funded study.
We used the seismic reflection data to map the Great Salt Lake fault (GSLF) and associated subsidiary faults in the north arm of the Great Salt Lake and to revise an analogous map for the south arm of the lake that we constructed for a previous USGS/NEHRP-funded project. We also mapped the trace of the Carrington fault, another major normal fault in the Great Salt Lake, using our seismic reflection data and high-resolution bathymetry data for the lake.  Based on the geometry of our mapped surface trace for the GSLF, variations in the amount of lakebed offset along this fault, and other evidence for recency of faulting, we hypothesize that the GSLF consists of the following four segments from north to south (with end-to-end length measurements): the Rozel segment (≥ 18 km), the Promontory segment (≥27 km), the Fremont Island segment (24 km), and the Antelope Island segment (35 km).
Seismic reflection profiles across the GSLF in the north arm show clear evidence for individual paleoearthquakes in the form of stratigraphically limited subsidiary faults and monoclines and coseismic bedding rotations adjacent to the fault. Based on these types of features, we have identified seismic event horizons for two or three paleoearthquakes on the Rozel segment and two or three paleoearthquakes on the Promontory segment , all within ~8 m of the lake bottom.  A possible fourth Promontory segment earthquake is suggested by the higher fault scarps along this segment. The earthquake event horizons that we have identified in this study can be cored and dated to establish a paleoearthquake history for the Rozel and Promontory segments of the GSLF. In the meantime, based on comparisons with the depths of dated event horizons on the Antelope Island and Fremont Island segments, it seems reasonable to assume that the average recurrence interval of 4200 ±1400 years that we have determined for these two segments is also applicable to the Rozel and Promontory segments