Origins of a National Seismic System in the United States

Origins of a National Seismic System in the United States

John R. Filson, Walter J. Arabasz

ABSTRACT

This historical review traces the origins of the current national seismic system in the United States, a cooperative effort that unifies national, regional, and local-scale seismic monitoring within the structure of the Advanced National Seismic System (ANSS). The review covers (1) the history and technological evolution of U.S. seismic networks leading up to the 1990s, (2) factors that made the 1960s and 1970s a watershed period for national attention to seismology, earthquake hazards, and seismic monitoring, (3) genesis of the vision of a national seismic system during 1980–1983, (4) obstacles and breakthroughs during 1984–1989, (5) consensus building and convergence during 1990–1992, and finally (6) the twostep realization of a national system during 1993–2000. Particular importance is placed on developments during the period between 1980 and 1993 that culminated in the adoption of a charter for the Council of the National Seismic System (CNSS)—the foundation for the later ANSS. Central to this story is how many individuals worked together toward a common goal of a more rational and sustainable approach to national earthquake monitoring in the United States. The review ends with the emergence of ANSS during 1999 and 2000 and its statutory authorization by Congress in November 2000.

The frequency dependence and locations of short‐period microseisms generated in the Southern Ocean and West Pacific

Gal, M., A. M. Reading, S. P. Ellingsen, L. Gualtieri, K. D. Koper, R. Burlacu, H. Tkalcic, and M. A. Hemer (2015). The frequency dependence and locations of short‐period microseisms generated in the Southern Ocean and West Pacific, J. Geophys. Res. Solid Earth, 120, 5764‐5781, doi:10.1002/2015JB012210.

Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera

Farrell, J., R. B. Smith, S. Husen, and T. Diehl, 2014, Tomography from 26 years of seismicity revealing that the spatial extent of the Yellowstone crustal magma reservoir extends well beyond the Yellowstone caldera, Geophys. Res. Lett., 41, doi:10.1002/2014GL059588.

Exploring remote earthquake triggering potential across EarthScopes’ Transportable Array through frequency domain array visualization

Linville, L. M., K. L. Pankow, D. L. Kilb, and A. A. Velasco (2014). Exploring remote earthquake triggering potential across EarthScopes’ Transportable Array through frequency domain array visualization, J. Geophys. Res. Solid Earth 119, 8950‐8963, doi:10.1002/2014JB011529.